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It is envisaged that guidelines for statistical analysis and presenta-
tion of results will improve the quality and value of research. The 
Nordic Arthroplasty Register Association (NARA) has therefore 
developed guidelines for the statistical analysis of arthroplasty 
register data. The guidelines are divided into two parts, one with 
an introduction and a discussion of the background to the guide-
lines (Ranstam et al. 2011a, see pages x-y in this issue), and this 
one with a more technical statistical discussion on how specific 
problems can be handled. This second part contains (1) recom-
mendations for the interpretation of methods used to calculate 
survival, (2) recommendations on how to deal with bilateral 
observations, and (3) a discussion of problems and pitfalls associ-
ated with analysis of factors that influence survival or compari-
sons between outcomes extracted from different hospitals. 



This paper on statistical guidelines for analysis of arthroplasty 
register data is divided into 4 sections, each one addressing 
methodological issues. The sections include recommenda-
tions about (1) competing risk problems, (2) detecting and 
handling departures from the proportional hazards assump-
tion, (3) bilateral observation, and (4) revision rate ranking. 

An introduction to and background description of these 
problem areas is presented in Part I. This second part contains 
a more technical discussion. 

1. Competing risk

The endpoint analyzed in arthroplasty registries often consists 
of two distinct events: revision and death. The latter, of course, 
always precludes the occurrence of a subsequent revision. It 
can be argued that the presence of a risk of a competing event 
(competing risk) may bias Kaplan-Meier (KM) survival esti-
mates (Biau et al. 2007). The reason for this is that the validity 
of the KM method rests on the assumption of identical revision 
risk in censored and uncensored patients. If censored patients 
cannot be revised, which is the case with patients who are cen-
sored because of death, revision risk will be overestimated. 

To obtain a more valid estimate of the revision risk, the 
cumulative incidence function can be used (Gooley et al. 
1999). Here, patients’ deaths can be considered to be compet-
ing events, while patients who are alive and unrevised at the 
end of follow-up can be censored. The method is described 
using an example.

Example 1. Five patients with primary total hip arthroplasty
Consider a simple study of 5 patients with primary total hip 
arthroplasty who are followed for 10 years (Table 1, column 
3), and assume that death is considered a competing event. 
The events studied are thus implant failure and death. 

In contrast to the cumulative incidence method, the KM 
method excludes censored patients from the at-risk popula-
tion at the time of censoring. It is assumed that these censored 
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patients have the same probability of revision as patients who 
are still under observation. The assumption may, of course, 
be true for patients who are alive and unrevised at the end of 
follow-up, but is is not true for patients who have been cen-
sored because of death. 

With the data in the example, the KM method estimates the 
cumulative revision risk to be 25% at 10 years. The cumula-
tive incidence approach estimates the revision risk to be 20% 
at 10 years.

The situation becomes more complicated if there is more 
than one competing risk event—for example, if patients 
undergo revision for other causes. Cumulative incidence is 
the appropriate method for estimation of the survival of the 
implant as an independent event. However, in clinical situa-
tions—such as when different severe comorbidities are pres-
ent—the patient may need a revision, but it is contraindicated. 
The comorbidities should then, in principle, also be consid-
ered a competing risk because they alter the probability of 
the revision of interest. However, if data on comorbidity are 
not available, then cumulative incidence estimates based only 
on death, with other revisions as competing risks, may not be 
unproblematic. 

In the presence of competing risk events, cumulative inci-
dence curves for groups can also be compared using a spe-
cial log-rank test for equality of cumulative incidence curves 
across groups, which was developed by Gray (1988).

Example 2. The Danish Hip Arthroplasty Register
Between 1995 and 2008, the Danish Hip Arthroplasty Register 
collected a dataset of 84,843 hip replacement procedures. At 
the 5-year follow-up, 11.4% of the patients were dead. 5 years 
later, the corresponding proportion had increased to 18.4%. 
At 5-year and 10-year follow-up, the KM estimate of implant 
failure was 4.3% and 8.5%, whereas the cumulative incidence 

Table 1. Illustration of data censoring and estimation of implant failure using the Kaplan-Meier (KM) and cumulative incidence methods 

	 KM method	 Cumulative incidence method	
 			 
A	 B	 C	 D	 E	 F	 G	 H	 I	 J	 K
 
2	 3	 Dead	 Censored	 0 × 1/5	 0	 Competing event	 0 × 1/5	 0	  1 × 1/5	 20
3	 5	 Revised	 Event	 1 × 1/4	 25	 Event	 1 × 1/5 	 20	  0 × 1/5	 0
5	 7	 Dead	 Censored	 0 × 1/3	 25	 Competing event	 0 × 1/5	 20	  1 × 1/5	 40
4	 10	 Alive	 Censored	 0 × 1/2	 25	 Censored	 0 × 1/5	 20	  0 × 1/5	 40
1	 10	 Alive	 Censored	 0 × 1/1	 25	 Censored	 0 × 1/5	 20	  0 × 1/5	 40

A Patient	
B Follow-up time (years)
C Status at the end of follow-up
D Status
E Contribution 
F Cumulative implant failure (%)
G Status
H Contribution 
I Cumulative implant failure (%)
J Contribution
K Cumulative death %					   

estimates were 4.1% and 7.2%, respectively (Figures 1 and 2).
This illustrates the impact of length of follow-up on KM 

estimates: as the proportion of competing risk events is large 
and increases with follow-up time, the KM estimates become 
more biased. The following question arises: “Is the difference 
between 4.1% and 4.3% at 5 years or between 7.2% and 8.5% 
at 10 years clinically important?”. 

Different standpoints
These two examples show that cumulative incidence is an ade-
quate measure to use for estimating the survival of implants 
without incorporating bias from patient survival. 

Figure 1. The probability of implant failure after primary total hip 
arthroplasty plotted against time using Kaplan-Meier estimate.

A
ct

a 
O

rt
ho

p 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
N

or
w

eg
ia

n 
K

no
w

le
dg

e 
C

nt
r 

H
ea

lth
 S

vc
s 

on
 0

5/
31

/1
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



260 Acta Orthopaedica 2011; 82 (3): 258–267

However, from the patient’s point of view, when he or she 
is contemplating whether or not to undergo joint replace-
ment surgery, it is adequate to consider only what happens 
during the lifetime of the patient. From this standpoint, the 
KM method is an adequate method to use because it is based 
on an implicit assumption that the patient will be alive until 
the implant fails. The KM estimate thus gives a more logical, 
understandable, and clinically relevant survival estimate.

Even so, in order to make a decision on allocation of eco-
nomic resources to joint replacement surgery or organization 
of the healthcare system, the cumulative incidence method 
may be more appropriate because patients who have died do 
not count in the risk of implant failure and will not need sur-
gery. 

Interpretational problems 
The interpretation of hazard rate ratios from Cox regression 
analysis is not straightforward with competing risk events, 
because those patients who fail from competing risk are 
removed from the population at risk of the event of interest.

One alternative is to compare the cumulative incidence 
functions using the Fine and Gray proportional hazards model. 
This is based on competing risk regression of the cumulative 
incidence functions (Fine and Gray 1999).

The method is implemented in S-PLUS, R, and Stata 11. 
More recently, Klein and Andersen (2005) have introduced a 
new regression model of competing risk data, which is avail-
able as a SAS macro. The R package for multi-state models 
can also be used to analyze competing risk problems; see 
Putter et al. (2007). 

Recommendation
When there are competing risks, survival estimates from the 
KM method are biased, and implant survival is overestimated. 
However, in data from arthroplasty registers, the size of the 
bias may not be clinically significant (Gillam et al. 2010). 

Furthermore, the decision of whether to use the KM method 
or the cumulative incidence method depends on the research 
question to be answered. The KM estimates of implant failure 
are more clinically meaningful and straightforward to inter-
pret for clinicians and patients. 

The competing risk problem should be acknowledged when 
competing risks exist; and if KM survival estimates are pre-
sented instead of cumulative incidence estimates, the number 
and type of censored observations should at least be described.

2. The proportional hazards (PH) assumption

The Cox regression model relies on hazards being propor-
tional; see Part I. This means that the hazard ratio (relative 
risk), e.g. calculated when comparing two hip implants, is 
constant over time. The estimated hazard ratio is biased 
when  this assumption is violated, for example, when the 
survival curves cross. Alternative analyses will then be 
required. 

Causes of non-PH
One reason for non-PH is that a factor’s effect on survival 
changes over time. This is, for example, often the case with 
implants that differ in design or materials. While they may 
perform similarly for the first few years after insertion, differ-
ences may become evident with prolonged follow-up, which 
is known to happen with some cup implants where problems 
associated with wear and loosening do not result in increased 
revision rates until at least 5–10 years after insertion (Havelin 
et al. 1995 a, b, 2002). Until wear and prosthetic loosening 
becomes symptomatic, cups that are inherently prone to these 
problems might still be doing just as well as cups with better 
long-term results (Hallan et al. 2010). 

Another reason for non-PH may be incorrect modeling—for 
example, if important risk factors are omitted from a regres-
sion model, or the functional form of a risk factor is incor-
rectly specified. One example of this is the inclusion of age as 
a continuous variable in a log-linear model of the effect of age 
on revision rate. If the actual relationship is J-shaped instead 
of log-linear, the model is mis-specified and one consequence 
may be non-PH. A better alternative might then be to use indi-
cator variables to specify what age groups patients belong to. 
It is also possible to model non-linearity using spline func-
tions (Therneau and Grambsch 2000).

The consequence of non-PH
If the PH assumption is violated, by hazard ratios increasing 
over time, the overall hazard ratio for the risk factor will be 

Figure 2. 	The probability of implant failure after primary total hip 
arthroplasty plotted against time using cumulative incidence estimate. 
Death is considered as the / a [authors: please choose one alternative] 
competing event.
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mately parallel and the vertical difference is equal to the log 
hazard ratio, i.e. the regression coefficient. 

Consider, for example, 3 hip implants: A, B, and C. Their 
Kaplan-Meier survival curves (Figure 3) indicate that the PH 
assumption does not hold for a comparison of implant A and 
B. This is also evident from the log-minus-log plot (Figure 4), 
where the vertical distance separating the curves clearly varies 
with time since operation. 

However, it is often difficult to decide whether the variation 
is large enough to conclude whether hazards are proportional 
or not. The relation between implant C and implant A is an 
example of this (Figure 4). The number of implants in some 
of the groups may also be small, and contribute to the uncer-
tainty. Furthermore, the curves plotted will be based on few 
observations towards the ends of the curves.

Another graphical approach is based on the notion of time-
varying regression coefficients ß(t). If the PH assumption is 
fulfilled, ß(t) is equal to a constant c throughout follow-up, 
and a plot of ß(t) against time will therefore be a horizontal 
line that cuts the y-axis at c. Such a plot may be based on 
scaled Schoenfeld residuals; this is also known as a partial 
residual plot (Grambsch et al. 1995). 

Test statistics have been developed to test the null hypoth-
esis of a constant regression coefficient over time (Therneau 
and Grambsch 2000). The scaled Schoenfeld residual plot for 
implant B versus implant A indicates that while the early sur-
vival of implant B is better than that of A, B is inferior with 
longer follow-up (Figure 5a). The null hypothesis of ß(t) being 
constant over time is also rejected (p < 0.001) (Table 4; row 
“overall”). 

Figure 3.	 Kaplan-Meier survival curves for implants A, B, and C with 
standard (solid line) and modified (dotted line) 95% confidence limits 
for implant A at 20 years. follow up.

Figure 4. Log-minus-log Kaplan-Meier survival curves for implants A, 
B, and C.

Figure 5. Smoothed scaled Schoenfeld residuals (solid line) with 95% confidence limits 
(dotted lines) are given for comparison of implant B with implant A (panel A) and for com-
parison of implant C with implant A (panel B). The graphs show that while early survival of 
implant B is better than that of implant A, survival of implant B is inferior with longer follow-
up, and that survival of implant C is consistently better than that of implant A. The horizontal 
red line indicates no difference in hazard rates (ß(t) = 0 for all values of t or equivalent that 
the relative risk is equal to 1).

overestimated. Decreasing hazard ratios 
will lead to underestimation (Schemper 
1992). 

The statistical power of the correspond-
ing tests of risk factors has also been shown 
to be reduced with non-PH (Lagakos and 
Schoenfeld 1984). 

How departures from the non-PH 
assumption can be investigated
For categorical variables, a simple infor-
mative graphical display can be made to 
evaluate the PH assumption, a log-minus-
log plot. The plot shows survival curves 
for each value of the investigated variable 
plotted, on a log-minus-log scale, during 
follow-up. A log transformation of the time 
axis is often used. If the PH assumption is 
fulfilled, the plotted curves are approxi-
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Figure 5b shows ß(t) estimated for implant C versus A. 
Although C appears to be inferior to A shortly after operation, 
the difference is not statistically significant—as evaluated 
using the 95% confidence limits. Instead, the overall impres-
sion is that implant C is consistently better than A. This is also 
confirmed by the non-PH test result giving a p-value equal to 
0.5 (Table 2; row “overall”).

Dealing with non-PH
Several approaches to dealing with departures from the 
non-PH assumption are available and can be performed within 
the context of the Cox model.

Stratified analyses
A risk factor that is unrelated to the PH assumption may be 
included in the model as a stratification factor. The main draw-
back of this is that it will no longer be possible to estimate 
the relationship between this risk factor and survival. In the 
example, implant brand is the main risk factor and stratifica-
tion is therefore not an option. It is also a disadvantage that 
stratified analyses are less efficient than unstratified (Therneau 
and Grambsch 2000). 

Time axis division
If the PH assumption is fulfilled for specific follow-up inter-
vals, the Cox regression model can be fitted with restricted 
follow-up. For instance, if it is indicated that there are no 
departures from the PH assumption during the first 5 years 
of follow-up, follow-up could be restricted to this interval, by 
censoring implants still at risk beyond 5 years. 

The time axis may also be partitioned into several time 
intervals (Havelin et al. 2002, Espehaug et al. 2009). For the 
example comparing implants A, B, and C, overall results and 
results within time intervals are given in Table 2. 

When implant B is compared with implant A, the refer-
ence implant, the overall hazard ratio (relative risk) estimate 
does not indicate any difference in survival between the two 
implants. However, the time-dependent analyses show that 
while the short-term result of implant B is better than that of 
A, the long-term results of B are worse than those of A. 

A test of non-PH within each time interval indicates propor-
tionality for the first and last interval. The results of compari-

son of implant C and implant A are also in accordance with 
what was stated earlier. 

While such analyses can be informative, the results clearly 
depend on the choice of time intervals. The statistical power 
for each analysis will also be reduced as fewer event times 
are included in each analysis. Thus, the procedure should not 
be recommended for small sample sizes or for samples with 
heavy censoring (Schemper 1992). 

Time-dependent coefficients
It is possible to model time-varying effects by creating time-
dependent risk factors (X(t)), which can be included in a Cox 
model. Many functional forms of X(t) can be chosen. It may 
be difficult to decide on the form of X(t), but the decision can 
be based on theoretical clinical assumptions, or be motivated 
by findings from the analysis performed in the investigation 
of PH. However, this implies searching for statistically sig-
nificant findings, and the exploratory nature of such results 
should be recognized. A division of the time axis may also be 
easily modeled as time-dependent risk factors using heaviside 
(or unit step) functions (Kleinbaum and Klein 2005). 

Schemper’s weighted model
An alternative to the previously described methods is Schemp-
er’s model, which in contrast to Cox’s model weights obser-
vations differently depending on follow-up (Schemper et al. 
2009). While the Cox model gives the same weight to early 
and late hazard ratios, which biases the hazard ratio, the 
weighting in Schemper’s model enables the estimation of a 
hazard ratio representative of overall follow-up. 

Other approaches
All of the methods described here represent extensions of 
the Cox regression model. There are many other models for 
survival data that can be used, however, including different 
parametric models, the accelerated failure time model, and the 
additive hazards model (Aalen 1989, 1993).

Recommendation
It is necessary to investigate the fulfillment of—and to correct 
for departures from—the assumption of PH. Standard statis-
tical program packages usually offer several solutions to the 

Table 2. Relative risk (RR) estimates based on Cox regression analyses for all observations (overall) and with 
restriction on survival times with cutpoints set at 5 and 10 years

Implant:	 A	 B	 C

Follow-up	 RR	 RR	 95% CI	 p-value	 non-PH	 RR	 95% CI	 p-value	 non-PH
 
Overall 1 1.08 0.98–1.19 0.1 < 0.001 0.72 0.62–0.83 < 0.001 0.5
0–5 years 1 0.77 0.66–0.90 0.001 0.9 0.73 0.60–0.89 0.002 0.003
5–10 years 1 1.19 1.00–1.42 0.06 0.001 0.71 0.54–0.92 0.01 0.6
> 10 years 1 1.67 1.39–1.99 < 0.001 0.1 0.70 0.50–0.97 0.03 0.5
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problem. A simple initial analysis would be to create log-log 
plots, but hypothesis tests of Schoenfeld residuals are less sub-
jective. 

The methods described for detection of non-PH may be of 
more use as tools, however, in an exploratory investigation 
of the form of time-varying coefficients than as a means of 
testing a simple hypothesis of PH. In many studies, non-PH  
represents an important finding in itself, which should be 
explored further. Several papers based on registry data have 
demonstrated this (Johnsen et al. 2006, Gjertsen et al. 2007, 
Espehaug et al. 2009, Schrama et al. 2010). 

In registry studies based on relatively large samples, the 
analyses can be performed most easily with a partition of the 
time axis, or by including time-dependent variables in the Cox 
regression model. Should a summary measure of the overall 
hazard ratio, adjusted for non-PH, be of primary interest, the 
weighted model of Schempers et al. (2009) may be a better 
alternative.

3. Bilateral observations

Bryant et al. (2006) reported that a high proportion (42%) 
of clinical studies in orthopedical journals generally involve 
inappropriate use of multiple observations from single indi-
viduals. 

Patient-specific physiological and behavioral factors can be 
expected to play an important role in the lifetime of prosthesis 
(Robertsson and Ranstam 2003). For example, patients with 
bilateral coxarthrosis tend to strain the painless hip, which can 
cause loosening of the prosthesis (Möllenhoff et al. 1994). 

Many statistical methods, including Kaplan-Meier analysis 
and Cox’s model, are based on an assumption of indepen-
dent observations. However, multiple observations on one 
patient, such as knees, hips, ankles, etc., usually have more in 
common than single observations from different patients, i.e. 
within-subject measurements often have lower variance than 
between-subject measurements. This implies that such obser-
vations are not independent but correlated. The correlation is 
known as intraclass correlation. 

The consequence of violating the assumption of indepen-
dent observations is often that the statistical precision is over-
estimated, with p-values being too low and confidence inter-
vals too narrow (Ranstam 2002). 

Several methods are available for handling the problem. 
The simplest one is to include only one observation from each 
patient. However, an alternative is to analyze the correlated 
observations using a method that allows inclusion of correlated 
observations, e.g. by including a shared frailty variable in the 
Cox regression model (Hougaard, 2000, Robertsson and Rans-
tam 2003), by fitting a marginal model (Carriere and Bouyer 
2002), or by using resampling techniques (Hoffman et al. 2001). 

For practical reasons, the discussion here will be restricted 
to two alternatives: (1) including only one observation per 

patient, and (2) fitting a shared gamma frailty model (Cox 
model with a shared frailty variable assumed to have a gamma 
distribution).

The basic assumption of frailty models is that the depen-
dency in the failure times of correlated observations (of a 
bilaterally treated patient) can be ascribed to an unobservable, 
latent, patient-specific variable, and that the failure times of a 
patient are independent when the analysis is conditioned on 
this (Schwarzer et al. 2001). 

Results of analyses of data from arthroplasty registers usu-
ally disregard bilaterality problems. It is simply assumed that 
the revision risks of uni- and bilateral prostheses are identi-
cal (Havelin et al. 2000, Malchau et al. 2002, Eskelinen et 
al. 2005). In spite of this, there has not been any generally 
accepted view on the effects of ignoring bilaterality (Roberts-
son and Ranstam 2003). 

Review of the literature
Visuri et al. (2002) studied the influence of bilaterality on 
the survival of hip prostheses using data from the Finnish 
Endoprosthesis Register. The material was divided into 4 
study groups: unilateral THA, first and second bilateral THA, 
and 1-staged bilateral THA. The survival of the first bilateral 
prosthesis was similar to that of unilateral prostheses. How-
ever, the second bilateral prosthesis survived statistically sig-
nificantly longer than unilateral prostheses. The authors con-
cluded that the better survival of the second bilateral results in 
too favorable a prognosis, and that the bias could be expected 
to increase with the proportion of bilateral prostheses. 

Havelin et al. (1995) studied patients with Charnley pros-
theses based on data from the Norwegian Arthroplasty Reg-
ister. Separate analyses were performed to examine the effect 
of bilateral replacement as opposed to unilateral replacement 
on prosthesis survival. The overall results for patients who 
had had a unilateral operation were not statistically signifi-
cantly different from the overall results for those who had had 
a bilateral operation. It was concluded that the possible effect 
of dependencies within a patient was unimportant.

In their study of estimation of frailty models, Ripatti and 
Palmgren (2000) used data from male patients who had under-
gone primary total hip arthroplasties. Over 20% of the patients 
received bilateral implants and 30% of the patients had more 
than one operation. Two different frailty structures were fitted: 
a shared frailty model and a hierarchical frailty model. The 
more flexible frailty model gave estimates closer to those of 
the Cox model, ignoring the dependencies in the data. It was 
concluded that a tight model structure for the dependence in 
the shared frailty model might induce model misspecification 
bias in the fixed-effects estimates. 

The bias of not taking bilateral operations into account was 
also investigated by Robertsson and Ranstam (2003), by ana-
lyzing patients who underwent knee arthroplasty surgery in 
Sweden, using both a traditional proportional hazards analysis 
and a shared gamma frailty model. Comparison of revision 
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risk between TKA and UKA and ignoring bilaterality by using 
a traditional proportional hazards analysis yielded a hazard 
ratio estimate of 1.84 (95% CI: 1.71–1.97). Accounting for 
subject dependency among bilateral prostheses, by perform-
ing the comparison using a shared gamma frailty model, 
yielded a hazard ratio estimate of 1.98 (95% CI: 1.83–2.14). 
The authors’ conclusion was that the effect of ignoring subject 
dependency of bilateral operations is negligible.

Schwarzer et al. (2001) also used a shared gamma frailty 
model to model bilateral dependencies for primary hip pros-
thesis data, and they concluded that failure times of bilateral 
hip prostheses could be treated as if they were independent 
when relevant prognostic factors were considered in the analy-
sis. 

In the study by Lie et al. (2004), information from the Nor-
wegian Arthroplasty Register was used. The results from an 
ordinary Cox analysis were compared with the results from a 
marginal model, a shared gamma frailty model, and a model 
using a time-dependent covariate to condition from failures 
in the opposite hip. No practical difference between the three 
calculated survival curves for the hip replacement data was 
found. It was concluded that in analyses of prostheses sur-
vival, the dependencies between bilateral observations should 
be considered, but ignoring the dependency does not necessar-
ily have any effect on the results.

Recommendation
In several studies, the dependency of bilateral prostheses has 
been shown to have little practical consequences, at least with 
hip and knee data. Inclusion of only one side of the bilater-
ally operated patients solves the dependency problem, but it 
can also induce bias and does lead to loss of statistical power. 
Notwithstanding these remarks for hip and knee data, it is gen-
erally important to be aware of possible problems with depen-
dent data. Consequences may be more serious for other joints. 
The number of independent observations and bilateral obser-
vations should always be presented. Sensitivity analyses may 
be useful to show that results are robust regarding departures 
from the independence assumption.  

4. Revision rate ranking

Nordic arthroplasty registers generally have data of high qual-
ity and excellent coverage. Arthroplasty registers usually 
also provide information on revision rates for different types 
of implants and for patients with different diagnoses. It may 
therefore seem straightforward to use ranking as a means of 
identifying clinically important differences between clinics 
and at the same time establish benchmarks for optimal treat-
ment. 

Ranks of observed revision rates are not easily interpreted, 
however. First, in contrast to the revision rates of clinics, 
ranks are seldom presented with any information on sampling 

uncertainty, e.g. with confidence intervals. Secondly, the con-
sequences of less than perfect data quality, i.e. random and 
systematic misclassification of revised patients as unrevised, 
are usually not considered. Thirdly, the sample of patients 
being treated at different clinics is usually unbalanced with 
respect to predictive factors, which—with the same quality of 
care—would also cause differences in outcome. This problem 
is often referred to as a case mix problem. 

Given the generally low revision rates in Nordic knee and 
hip arthroplasty registers, which in itself makes it difficult to 
identify clinically important differences between clinics, each 
one of the three sources of spurious rank differences has the 
potential to confuse ranks substantially. Results from com-
parisons based on ranking of clinics thus carry less useful 
information than would be expected, and are prone to misun-
derstandings. 

A more detailed description of the three different rank 
confusion phenomena, with suggestions on how to assess 
and reduce the uncertainty in rank comparisons, is presented 
below.

Sampling uncertainty
Sound generalization of scientific findings, to subjects other 
than those examined, accounts for the fact that the represen-
tativeness of observations in a sample is uncertain. Tradition-
ally, the influence of this uncertainty on the findings made is 
evaluated with hypothesis tests and presented to the reader in 
terms of p-values. 

For many years, however, it has been argued that interval 
estimation with presentation of uncertainty using confidence 
intervals is a better alternative. The Uniform Requirements 
for Manuscripts Submitted to Biomedical Journals (ICMJE) 
also state that findings should be quantified and presented with 
appropriate indicators of uncertainty, and confidence intervals 
are suggested. 

The influence of sampling uncertainty on a hopital’s rank 
number cannot usually be calculated using conventional sta-
tistical methods. Confidence intervals for the ranked observa-
tions may be presented, however. These confidence intervals 
unfortunately do not describe rank uncertainty directly, and 
should not be used for this purpose. 

Confidence intervals for ranks can, however, be calculated 
using Monte Carlo simulation (Marchall and Spiegelhalter 
1998), which is easily achieved with modern computers. For 
ranking of hospitals with regard to revision rates, the confi-
dence interval calculations would be performed on the basis of 
hospital-specific revision rates and their sampling uncertainty.

Revision rates of knee and hip prostheses are generally low. 
As a consequence, the information on hospital-specific revi-
sion rates may be very limited for hospitals performing few 
primary operations. This may, in turn, lead to exaggeration of 
differences in revision rates between hospitals. Assume, for 
example, that a hospital performs just 1 primary operation. 
Whatever the true revision rate for the hospital, the observed 
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revision rate can only be 0% or 100%, depending on whether 
the prosthesis is revised or not. Of course, such randomly 
exaggerated hospital effects have great impact on hospital 
ranks. 

Two basically different methods are available for estimation 
of hospital-specific revision rates. These treat hospital-spe-
cific revision rates either as fixed or random effects. While the 
former corresponds to estimating revision rates using a Cox 
model, the latter corresponds to using a shared frailty model. 
Analysis of revision rates as random effects has the advantage 
of protecting against exaggerated differences as described 
above (Robertsson et al. 2006). 

Misclassification
As much as all registries have routines for monitoring regis-
tration procedures and validating data, no registry has error-
free data only. For continuous data, the term accuracy is used 
to describe the correctness of the information registered. For 
categorical data, registration errors that lead to an erroneous 
category being registered are known as misclassifications. For 
example, when a prosthesis revision is erroneously registered 
as a primary operation, there has been a misclassification.

Many prosthesis registries do not register revisions directly, 
but define revisions by deriving information from compari-
sons of two or more operation records on the same patient; 
if a subject has a second operation on the same side, then the 
second operation is considered a revision.

Clerical errors in registration of patient ID number, side, or 
date of operation may then result in a misclassification of a 
revision as a primary operation. The revision rates observed 
are thus uncertain—not only because of sampling, but also 
because of measurement errors.

Valid ranking of hospitals requires valid data. Monte Carlo 
simulation of misclassification in the Swedish Hip Prosthesis 
Registry (Ranstam et al. 2008) showed that misclassification 
probabilities as low as 2–3%, although they had minor conse-
quences for revision rates, had major effects on hospital ranks. 
Hospital-specific revision rates are very similar.   

It is therefore doubtful whether registries can achieve data 
that are of high enough quality for valid ranking. Investigation 
and presentation of the validity of registry data should be pri-
oritized in registries used for hospital ranking. 

While sampling uncertainty, at least under the assumption 
of random sampling, is usually considered an entirely random 
phenomenon, misclassification can also be assumed to have a 
systematic component. This could, for example, be the case if 
revision registration from a hospital with high revision rates 
was prone to a large number of registration errors, leading to 
fewer revisions being identified—thus giving the hospital a 
better rank than it deserves.

Case mix
The term case mix refers to the mix of cases treated by a hos-
pital. As the allocation of cases to hospitals is not randomized, 

it is plausible, or even likely, that cases treated by different 
hospitals will have systematic differences in predictive factors 
such as age, sex, severity, and so on. One could, for example, 
hypothesize that severe cases have a greater propensity to be 
treated at university hospitals than less severe cases.

The effect of an unbalanced case mix is that estimated revi-
sion rates are confounded by association with the predictive 
factors. This bias will, of course, also have consequences for 
the validity of the hospital ranks, giving some hospitals erro-
neously low—and others erroneously high—ranks. 

It is possible to adjust revision rates for the unbalanced case 
mix using statistical models, if all predictive factors are known 
and registered. This is seldom the case, however. It is more 
probable that not all the predictive factors are known, and only 
a few of all the known predictive factors are usually measured 
and registered.

Even when statistical case mix adjustments have been per-
formed, it is reasonable to expect that confounding effects 
remain. 

Clinical relevance
It is of value to document different outcome parameters over 
time. It is especially beneficial for the individual hospitals 
or operating units to analyze their results on a continuous 
basis. If the aim is to ascertain, maintain, and even improve 
the quality of a medical intervention, the results have to be 
known. It is also important to know the expected results based 
on a large sample average, if such information is available. 
If, for example, the overall revision rate within 2 years of a 
knee arthroplasty doubles, this could either be true or spuri-
ous variation. Even if the true nature of this increase cannot 
be established, further studies of these patients may be help-
ful to improve future practice. Perhaps one or several steps 
in the treatment of these patients may be inadequate or fails 
to work as intended. Experiences from the Swedish total hip 
arthroplasty register point in that direction.

 The information as such will raise a number of questions. 
The first question is whether this increase is really true or just 
a result of random variation? Has the patient population or 
case mix changed? As indicated above, it is difficult to do a 
proper statistical evaluation of this problem. For high-volume 
hospitals, and especially those with a comparatively uniform 
patient population, an answer based on sound statistics may 
be possible. For units with low volumes and infrequent out-
comes, the true nature of variations in outcome on an annual 
basis can rarely be answered. 

Regardless of whether or not there is statistical significance, 
increasing incidence of an undesirable outcome should alert 
the health providers to perform an in-depth analysis. This 
evaluation could be very simple and should at least include a 
case-by-case analysis. Such an analysis will provide valuable 
information, especially if inferior results turn out to be caused 
by avoidable clinical mistakes and malpractice.

The outcome of, for example, a hip arthroplasty will affect 
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the patient in a multitude of ways, and for a proper analysis 
several outcomes must be measured. These outcomes should 
be valid, should be easy to define and to measure, and should 
include the opinion of the patient. Some of them, e.g. patient-
reported outcome parameters such as EQ-5D, might be easier 
to treat from a statistical point of view, but are still dependent 
on sample size and case mix. 

In several countries, it is mandatory to report outcomes 
of medical interventions at the hospital level. The idea is to 
encourage and stimulate continuous improvement. There is 
also a demand from the public to gain access to this informa-
tion. This development will increase the demand on the profes-
sion to provide simple instruments for interpretation of such 
data. As already mentioned, a proper and meaningful statisti-
cal evaluation that ranks performance at the hospital level is 
difficult and sometimes impossible due to small sample size, 
lack of sufficient information, and missing or incorrect infor-
mation. On the other hand, continuous monitoring of results 
from individual hospitals can be extremely valuable and is 
a prerequisite for persistently high quality of healthcare. In 
that process, comparisons with expected performance become 
more or less unavoidable. It is, however, important that the 
uncertainty of such comparisons is recognized and that the 
accuracy of the comparisons is assessed to minimize the risk 
of misinterpretation.

Recommendation
Ranking of hospital-specific outcomes such as revision rates 
is associated with several methodological problems and 
should be considered to be an uncertain method for compari-
son of hospitals. If done, the inherent uncertainties should be 
described as clearly as possible: rank numbers should be pre-
sented with confidence intervals, data validity or misclassifi-
cation probabilities should be investigated and described, and 
the influence of confounding factors should be discussed and 
accounted for as far as possible.
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